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Abstract 

 

In the 5G era, the communication networks tend to be ultra-densified, which will improve the 

accuracy of indoor positioning and further improve the quality of positioning service. In this 

study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint 

matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to 

construct a local fingerprint matrix having low-rank characteristics using partial fingerprint 

data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA 

reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching 

strategy is used to screen out the best quality service base stations and multiple sub-optimal 

service base stations. Then, the fingerprints of the other base station numbers are eliminated 

from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated 

coordinates of the point to be located are obtained through the K-nearest neighbor matching 

algorithm. The analysis of the simulation results demonstrates that the average relative error 

between the reconstructed fingerprint database by the DSR-FP algorithm and the original 

fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint 

database is high, and the influence of the location error can be ignored. The positioning error 

of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, 

the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint 

matching algorithm, while its positioning accuracy is higher. 

 

Keywords: Dynamic Base Station Matching Strategy, FPCA Reconstruction Algorithm,    

KNN Matching Algorithm, 5G Ultra-Dense Network 
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1. Introduction 

with the development of information technology, location services are gradually becoming 

indispensable in the daily lives of humans [1]. In outdoor environments, location information is mainly 

obtained through satellite positioning systems, such as GPS and BeiDou navigation satellite system, 

with a positioning accuracy of approximately 10 m [2]. However, in indoor environments, owing to the 

blocking by buildings, the satellite signal is poor, resulting in a large positioning error; thus, obtaining 

location information becomes challenging and the needs of people cannot be met [3]. 

At present, most people live in indoor environment for more than 80% of the time. 

Therefore, indoor location service is more and more valued by people [4]. Mobile 

communication technology is widely used in location services because of its large coverage 

and wide application. The positioning technology based on the fourth generation (4G) mobile 

communication technology can achieve a positioning accuracy of several meters; however, the 

sub-meter level of accuracy required by users cannot be attained. The fifth generation (5G) 

mobile communication technology is expected to realize ultra-dense network [5] deployment 

to significantly improve the density of base stations. In this manner, users can simultaneously 

communicate with multiple base stations, and use these base stations to achieve multi base 

station collaborative positioning. This positioning method can improve the positioning 

accuracy to sub meter level and better meet the people's needs for positioning. Therefore, the 

study of indoor positioning algorithms for 5G ultra-dense networks is of immense 

significance. 

The traditional indoor positioning algorithms are mainly based on time of arrival (TOA) 

ranging [6], time difference of arrival (TDOA) ranging [7], received signal strength indicator 

(RSSI) ranging [8], angle of arrival (AOA) ranging [9], fingerprint matching [10], etc. In 

2017, Yang et al. proposed a KFL-TOA indoor positioning method based on ultra-wideband 

(UWB) for the positioning problem in complex indoor environments. This method in 

combination with TOA and the linear Kalman filter can achieve a positioning error of 0.32 m 

[11]. Jia et al. proposed a three-dimensional (3D) indoor positioning algorithm based on 

motion features and multipath AOA-TOA in a single base station indoor environment. First, 

an improved least mean square algorithm in combination with a motion message was adopted 

to refine the multipath AOA estimation. Then, an improved multipath lossless Kalman filter 

was used to track the location of the user equipment in the scene. The simulation results 

demonstrated that the proposed algorithm can result in a two-fold gain in sight distance AOA 

estimation [12]. Zhang et al. proposed a visible light indoor positioning algorithm based on 

artificial neural networks (ANNs), which could accurately model the RSSI data in the 

RSSI-based indoor positioning system and the distribution of the initial delay of the LED chip 

in the indoor positioning system based on the phase difference of arrival (PDOA). 

Additionally, a selection strategy using both the PDOA and RSSI measurements was 

introduced to reduce the effect of intensity changes to improve robustness. Simulations 

demonstrated the feasibility of ANN-based modeling and illustrated the robustness of the 

hybrid positioning system under different intensity variations [13]. Zhang et al proposed an 

indoor location algorithm based on the TDOA/ frequency difference of arrival (FDOA) joint 

location, and further improved the location performance of the algorithm by using the 

enhanced semi-definite relaxation method, which effectively improved the location accuracy 

[14]. In summary, the above algorithm is mainly based on the signal ranging positioning 

method. Although its positioning accuracy can reach the sub-meter level in a 5G ultra-dense 

network, there are many base stations with high density and large interference between the 
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base stations, which affects the positioning accuracy of the signal ranging-based positioning 

method and hinders the achievement of the required positioning accuracy. 

The fingerprint matching algorithm is used to estimate the coordinates of the point to be 

located by pre-constructing the location database and then matching the fingerprints of the 

point to be located with the fingerprint database through the matching algorithm. Although the 

fingerprint matching algorithm requires a large amount of fingerprint data to create the 

fingerprint database, it can still maintain a certain positioning accuracy when there is a large 

interference in the environment. Many scholars have conducted relevant research on 

fingerprint matching algorithms. The RADAR indoor positioning system proposed by P. Bahl 

et al. Of Microsoft Research in 2000 is the earliest positioning system that uses WLAN signals 

as a positioning basis [15]. Horsmanheimo et al. designed and implemented a 5G-based indoor 

positioning platform using fine timing measurement (FTM) technology, which could calculate 

the position estimation value through multilateral calculation, realizing image-based 

positioning and RSSI-based fingerprint identification [16]. This platform can test and verify 

the indoor positioning accuracy in heterogeneous networks composed of pico-cells. Liu et al. 

proposed an improved algorithm based on weighted K nearest neighbor (W-KNN). In the 

offline phase, the algorithm filters out invalid data by using data expectations and selects the 

mean of the RSS and the variance of the access point (AP) as feature vectors. In the online 

phase, the weighted distance is proposed to calculate the similarity based on the difference in 

the AP. Additionally, the nearest primary neighbor and (k-1) secondary neighbors are obtained 

by comparing the weighted distance. The estimated location of the point to be located is 

obtained based on the correlation between the primary neighbor and (k-1) secondary 

neighbors [17]. The experimental results demonstrate that the algorithm can provide a 

positioning accuracy of 2.438 m, which is higher than that of the RSSI positioning fingerprint 

algorithm used alone in an indoor environment. These fingerprint matching algorithms are 

relatively easy to build because of the small number of base stations and the small amount of 

data in fingerprint database. These algorithms demonstrate a good positioning accuracy. 

However, in the ultra dense network, the number of base stations involved in fingerprint 

location algorithm is large and the density is high. The workload of building fingerprint 

database is increasing rapidly, and the time cost of online matching is also increased with the 

increase of data volume. Therefore, reducing the complexity of fingerprint location and 

interference between base stations, and improving the positioning accuracy are of utmost 

importance. 

Some scholars have conducted research on indoor location algorithms based on 5G 

ultra-dense networks. Elsawy et al. proposed a base station ordering localization technique 

(BoLT) based on a super-dense network, which uses Voronoi tessellations to divide the super 

dense network, constantly reducing the location area through base station sequencing. The 

experimental results demonstrate that when six ordered base stations participate in the location 

service, the location area is only 10% of the coverage of the six base stations, and when ten 

ordered base stations participate in the location service, the location area is only 1% of the 

coverage of the ten base stations. Moreover, they found that the technology yields a 

positioning accuracy of several meters or decimeters in 5G networks [18]. The spectral 

compression-based RSSI mapping fingerprint library method proposed by Talvitie et al. 

achieves a fingerprint library compression rate of more than 70% for 5G sensor-dense 

networks [19]. However, the positioning accuracy of these algorithms is not sufficiently high, 

and the positioning model is considered to be two-dimensional, which is unsuitable for actual 

3D environments. 
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In this study, we propose an indoor 3D dynamic reconstruction fingerprint matching 

algorithm (DSR-FP) in a 5G ultra-dense network. The contribution of this algorithm is as 

follows: 

(1) First, the algorithm constructs a local fingerprint matrix from partial fingerprint data, 

and then reconstructs the matrix as a complete fingerprint library using a fixed point 

continuation with approximate singular value decomposition (FPCA). This method builds 

complete large-scale fingerprint libraries by performing mathematical calculations with a 

small amount of fingerprint data, thus reducing the time, complexity, and cost of building the 

library. 

(2) The algorithm establishes a dynamic base station matching strategy, which uses the 

communication quality index between the point to be located and the communication base 

station to select the set of base stations with better communication quality. The collection can 

be dynamically updated in real time based on the communication quality. This can ensure that 

the best communication signal is always used for positioning, thereby reducing interference 

and improving positioning accuracy. The algorithm then uses the information of the base 

stations in the collection to further simplify the reconstructed fingerprint library, which is used 

for the next fingerprint matching, reduce the complexity of fingerprint matching, and reduce 

the matching time. 

(3) The algorithm uses the KNN method to match the fingerprint of the point to be located 

with the simplified fingerprint library to obtain the 3D estimated coordinates of the point to be 

located. 

(4) The technical feasibility of the reconstruction of the fingerprint database and the 

algorithm is verified through theoretical analysis. 

(5) Simulation results of the fingerprint database demonstrate that the database has low 

rank characteristics and can be reconstructed as a complete fingerprint database with a small 

amount of data. Additionally, the simulation results indicate that the average relative error of 

reconstructing the fingerprint library and the original fingerprint library is 1.21%, and the 

fingerprint library reconstruction accuracy is high. Furthermore, the feasibility of the DSR-FP 

algorithm is demonstrated. 

(6) The positioning errors of the DSR-FP algorithm and the traditional fingerprint 

matching algorithm are simulated for different signal-to-noise (SNR) ratio cases. The 

simulation results demonstrate that the positioning errors of the DSR-FP algorithm are all less 

than 0.31 m, and for the same SNR, the positioning errors of the DSR-FP algorithm are lesser 

than those of the traditional fingerprint matching algorithm, with higher positioning accuracy. 

The DSR-FP algorithm proposed in this paper firstly reconstructs fingerprint database by 

FPCA matrix filling method. This method uses the 52.7% fingerprint database data to recover 

the 47.3% original fingerprint database to reconstruct the entire fingerprint database. The 

average relative error between the reconstructed fingerprint database and the original 

fingerprint database is 1.21%. This method makes the reconstruction accuracy of fingerprint 

database high and greatly reduces the workload of fingerprint database construction. The 

DSR-FP algorithm establishes a dynamic base station matching strategy, which can select the 

base stations with better communication quality with the positioning point as the base station 

set. This strategy can realize the dynamic matching between the location point and the base 

station to simplify the reconstructed fingerprint database by using the best communication 

quality base station set. This strategy can reduce the amount of computation and improve the 

positioning accuracy. Finally, KNN algorithm is used to calculate the location of the point to 

be located. The simulation results show that the fingerprint database reconstruction is high in 

DSR-FP algorithm. The positioning error of the DSR-FP algorithm is smaller than the 
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traditional fingerprint matching algorithm, and the positioning accuracy of the DSR-FP 

algorithm is higher. 

2. Ultra-Dense Network Indoor Positioning Model 

The 5G ultra-dense network indoor positioning model is illustrated in Fig. 1. Let us consider 

that a right-angle coordinate system is established with O as the origin, and the volume of the 

model is A B Z  . Base stations distributed at the top of the model are set up, as indicated by 

the black dots at the top of the figure. The set of all the base stations is set to BS  and the total 

number of base stations is set to N . The base station i  is represented by ( 1... )iBS i N=  and its 

coordinate is ( , , )
i i i

x y z , where i
z Z= ; thus, 1 2[  ... ... ]i NBS BS BS BS BS= . Set the point u , which 

is to be located, to be distributed anywhere in space, as depicted in Fig. 1, whose coordinate is 

unknown and represented by ( , , )
u u u

x y z . Set the point u  to communicate with the base station 

1
BS – 4

BS  via 5G technology.  

In this model, the network formed by the base stations is an ultra-dense network, which 

consumes more power owing to the larger number of base stations. To reduce the power 

consumption, the base station has two states, namely, “active” and “dormant.” An array I  of 

length N  is used to represent the state of all base stations, the elements of which consist of 1 

or 0. 1 represents that the base station is “active” and 0 represents that the base station is 

“dormant.” If [1 0 0 ... 1 1 ...]NI = , the first base station is “active,” the second and third base 

stations are “dormant,” and so on. Array I  is updated in real time according to the status of 

each base station. 

 

x

z

y

O
A

Z

B

u

BS1 BS2

BS4

BS3

 
Fig. 1.  Indoor positioning model for 5G ultra-dense network 

 

To provide better quality of service to users and improve positioning accuracy, each base 

station (cell) service area is divided. Assuming that the distribution of the base station obeys 

the homogeneous Poisson process, the coverage of the base station can be characterized by 

Tyson polygons (Voronoi tessellations). 
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As can be seen from Fig. 1, the area of the top plane of the model is S A B=  .If the 

communication radius of each base station is r , the density of the base station   can be 

expressed as  

         
2r

N
S





=                                                            (1) 

The probability distribution of the base stations according to the homogeneous Poisson 

process is 

              
!

N

F e
N

 −
=                                                            (2) 

The distribution of the base stations characterized by the Tyson polygons in Fig. 1 is 

depicted in Fig. 2. 
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Fig. 2.  Distribution map of cell service areas 

 

In Fig. 2, the black dots indicate the base stations and the distribution of the base stations 

corresponds to the Poisson distribution, whereas the dashed area indicates the area covered by 

the base stations characterized by the Tyson polygon. 

3. DSR-FP Algorithm 

The DSR-FP algorithm comprises two stages: the offline library building stage and the online 

matching stage. In the offline database building phase, the fingerprint database is established 

by using the statistical fingerprint data before the location service. In the online matching stage, 

the fingerprint of the point u  to be located is matched with the fingerprint data in the database 

by using the matching algorithm, and the estimated coordinates of the point u  are finally 

obtained. 
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3.1 Offline Library Building Stage 

3.1.1 Fingerprint LIBRARY Composition 

According to the indoor location model of the super-dense network and the division method of 

the cell service area, the schematic diagram of the DSR-FP algorithm to build a 3D fingerprint 

database is illustrated in Fig. 3. 
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Fig. 3.  Schematic of the DSR-FP algorithm 

 

In Fig. 3, any point in space is called a fingerprint point, and its corresponding data is a data 

point in a fingerprint database, also called a fingerprint. Fingerprint point a  is used as an 

example to illustrate the composition of a fingerprint library. Let us consider a point a  as any 

point in space in the model and that its coordinates are ( , , )
a a a

x y z . There are m  ( m N ) base 

stations that can communicate with it. Then, the fingerprint a
fp  of a  is 

 

1 2[     ... ]a a a a a a Nafp x y z RSSI RSSI RSSI=                                                (3) 

 

where a
fp is a one-dimensional row vector with 3N + columns and 1a

RSSI – Na
RSSI  represents 

the signal strength received by a  from N  base stations. However, as only m  base stations 

can communicate with a , N m−  zero values are included in N RSSI values. If the number of 

all fingerprint points in the space is 1
n , set 2

3n N= + ; then, the fingerprint library can be 

represented as an 1 2
n n  matrix M . Then, 

 

1 1 1 1 1 1
1 2

1 1 1 11 21 1

1 2

1 2

    ...

...

    ...

...

    ...

N

a a a a a Na

n n n n n Nn
n n

x y z RSSI RSSI RSSI

x y z RSSI RSSI RSSI

x y z RSSI RSSI RSSI


 
 
 
 =
 
 
 
 

M                                         (4) 

 

Each line in the (4) represents a fingerprint point. Since 1
n  tends to infinity, it is difficult to 

obtain a matrix M  composed of any point in space. Typically, the distance between 

fingerprint points is taken as c , and 1
n is limited to a finite number 1

n , so that the matrix M  

becomes a finite matrix 1 2n n
M . To improve the positioning accuracy, the distance between 

fingerprint points c  should take smaller values. Thus, the amount of data in the fingerprint 
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database M is also considerably large, requiring a significant amount of time and cost to 

construct matrix M . However, if c  is too large, the positioning accuracy deteriorates again. 

Therefore, the construction of matrix M  is the key to influence the positioning accuracy. 

3.1.2 Reconstruction Algorithm 

According to the previous analysis, the fingerprints in M  contain several zero values and M  

exhibits a certain low rank. Thus, a matrix reconstruction algorithm can be used to reconstruct 

the complete fingerprint library through a portion of the data in the fingerprint library. 

The matrix reconstruction algorithms mainly include Singular value threshold(SVT), 

Fixed Point Continuation with Approxiamte SVD(FPCA), Accelerated proximal 

gradient(APG), OptSpace,Atomic Decomposition for Minimum Rank 

Approximation(ADMiRA) , and other algorithms.  

Reference [20] has proved that under the same rank and sample ratio, the SVT algorithm 

takes the longest time, the OptSpace algorithm is the fastest, while the FPCA algorithm 

exhibits the smallest reconstruction error. Therefore, the FPCA algorithm is adopted in this 

study, and is implemented as follows: 

Let us consider a partial fingerprint library Ψ  as a subset of M . The number of elements 

in Ψ  is t , and t  is much smaller than the total number of element in M , which is 1 2
n n . 

The fingerprint library reconstructed from Ψ  using the FPCA algorithm is X , which is the 

reconstructed fingerprint library of M . ( )Q
Ψ

X  is defined as the projection operator that 

reconstructs the fingerprint library X  on Ψ . 

 

   
( )=

0      otherwise

X X
Q





Ψ Ψ

Ψ

Ψ
X                                                         (5) 

 

where X
Ψ  represents the element in X and corresponds to the equivalent element in Ψ . Set 

( )Q 
Ψ

M  as the projection operator that M  on Ψ . According to the matrix-filling theory, X  

should satisfy the following equation. 

 

min ( )

. . ( ) ( )

rank

s t Q Q


 = Ψ Ψ

X

X M
                                                      (6) 

 

where ( )rank  denotes the rank of the matrix, and ( )rank X  denotes the rank of X . Equation (6) 

is a non-convex function; therefore, the problem is an NP-hard problem, which is extremely 

difficult to solve. Thus, Candès and Recht proposed that (6) can be replaced by the matrix 

nuclear norm minimization problem in [21], and the systematic elaboration and detailed proofs 

were conducted in [22]. The nuclear norm of X  is (7). 

 
( )

1

rank

j

j




=

= 
X

X                                                                (7) 

 

where 
X  represents the nuclear norm of X , and j  represents the singular value j  of X . 

Equation (7) is a convex function that can be solved by using semi-definite programming; thus, 

(6) can be transformed into (8) 
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min

. . ( ) ( )s t Q Q





= Ψ Ψ

X

X M
                                                    (8) 

 

and its Lagrangian version is (9).   

 

21
min + ( )- ( )

2 F
Q Q




Ψ Ψ
X X M                                          (9) 

 

where   represents a constant, ( )- ( )
F

Q Q 
Ψ Ψ

X M  is the Frobenius norm of ( )- ( )Q Q 
Ψ Ψ

X M . 

The X  that needs to be reconstructed in (9) is replaced by 0
X  constructed from Ψ . Then, we 

perform the iteration of the algorithm, and when the iteration is at generation  , we obtain 

(10). 

1

( )

( )

f

D
  

  



+

= −


=

Y X X

X Y
                                                         (10) 

 

where   represents a constant. ( )= (( ( ) ( )))f Q Q Q  

 −
Ψ Ψ Ψ

X X M , Q

Ψ  represents the adjoint 

operator of Q
Ψ , and D  is the matrix shrinkage operator with   =  . When 0  , we 

define D  as (11). 

 

,

( ) ( )

( ) {[( ) ]}

T

j

D d

d diag v

  

 

  

 



+


=


= −

Y Y Y

Y Y

Y U Σ V

Σ
                                           (11) 

 

In (11), Y
U  is an 1

( )n rank 
 Y  orthogonal matrix, Y

V  is an 2
( )n rank  Y  orthogonal 

matrix, and 
T

Y
V  is the transposition matrix of Y

V . , 1 ( )
= ({ } )j j rankdiag

  
  Y Y Y

Σ  is the 

approximate non-negative singularity matrix of Y  which is obtained by the Monte Carlo 

approximate SVD method, and 1 ( )rank   Y . The iteration of the algorithm can be stopped 

when (12) is satisfied. 

 

 
+1

max 1,

F

F

xtol
 



−


X X

X
                                                        (12) 

 

where xtol is a small positive number. If the number of iterations when the algorithm satisfies 

(12) is  , X  is finally expressed as (13). 

 

( )
T

d
    

=
Y Y Y

X U Σ V                                                                  (13) 

 

The FPCA algorithm steps are presented in Table 1. 
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Table 1. FPCA Algorithm Steps 

Number Steps 

Step 1. Initialization parameters: construct 0X byΨ , set 0=X X ,  min 0  , 1 2 min...     ; 

Step 2. 

Iteration:  

(1) Set 1=  , 0  , compute ( )f= −Y X X ; 

(2) Use Monte Carlo approximate SVD method on Y : T=
Y Y Y

Y U Σ V ; 

(3) Compute ( )D=X Y ; 

(4) Determine whether X  satisfies (12): if true, the iteration of the algorithm is stopped, else, 2=  , continue; 

Step 3. Output: X . 

3.2 Online Matching Stage 

There are 1 2
n n  data in the reconstructed fingerprint database X . Owing to the small spacing 

of fingerprint points c , therefore, the number of fingerprint points 1
n  is larger, and the amount 

of data in the fingerprint database are large. Additionally, X  should contain a large amount of 

zero value data as the original fingerprint matrix M . However, the point u  only 

communicates with a partially “active” base station; thus, the data in X  contains a large 

amount of redundant data, thereby increasing the time cost of online matching. 

In response to the above problem, this study proposes a dynamic base station matching 

strategy, in which the optimal base station and multiple sub-optimal base stations are screened 

by the quality of the communication between point u  and the base station, and the 

corresponding fingerprints in the fingerprint database are extracted, thus achieving the 

purpose of simplifying the database. 

Finally, the fingerprint of point u  is matched online with the fingerprints in the simplified 

fingerprint database to obtain the estimated location of point u . 

3.2.1 Dynamic Base Station Matching Strategy 

The schematic of the communication between point u  and the base stations is illustrated in 

Fig. 4. 

u

BSb

BS(u)

 

Fig. 4.  Communication diagram of point and base stations 

 

In Fig. 4, the set of base stations that can communicate with point u  is ( )BS u , ( )BS u BS . 

b
BS  represents the base station b  in BS  that can communicate with point u ; therefore, 

( )bBS BS u . Point u  communicates with the activated base station b
BS , and the other base 

stations in ( )BS u  are the interference base stations. ( )
b

SINR u  is expressed as the SNR 

between u  and b
BS , which can be expressed as (14). 
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2

( )

( )
( )

( )

b b

b

q q q

q BS u
q b

P g u
SINR u

P I g u



=
+                                                   (14) 

 

where 2  denotes the noise power, b
P  denotes the signal transmitting power of base station 

b
BS , b

I I  denotes the state of base station b
BS , ( )

b
g u  denotes the channel gain between 

base station b
BS  and point u , q

BS  denotes the interfering base station, qP  denotes the signal 

transmitting power of the interfering base station q
BS , q

I I  denotes the state of base station 

q
BS , and ( )

q
g u  denotes the channel gain between base station q

BS  and point u . 

The communication quality indicator between point u  and the communication base station 

b
BS  is ( )

b
L u , which can be expressed as (15). 

 

( ) ( ) ( )b b b b bL u P I g u SINR u=                                                 (15) 

 

The communication quality indicator between point u  and all the base stations in ( )BS u  is 

1 2( )=[ ( ), ( ),..., ( ),...]bL u L u L u L u . ( )
best

b u  denotes the serial number of the base station with the 

best quality of communication for point u , which can be expressed as (16). 

 

( )

( ) arg max ( )
b

best b
S BSB u

b u L u


=                                                    (16) 

 

The threshold value is set as ( )= ( ) / 3
bestb uL u , where ( ) ( )

bestb uL u  indicates the communication 

quality indicator of the most optimal communication between base station ( )bestb uBS  and point 

u . By using the threshold   to eliminate the poor data in ( )L u , that is to say, the base station 

with poor communication quality with point u  can be eliminated. The set of base stations with 

good communication quality with point u  is ( )
match

BS u , which contains the base stations that 

participate in the online matching of the DSR-FP algorithm. 

3.2.2 Simplified Fingerprint Database 

The serial numbers of base stations in ( )
match

BS u are set as 1– m . Let us consider the fingerprint 

a
fp  of fingerprint point a  as an example to illustrate the screening of fingerprints in the 

fingerprint library. After the screening, the fingerprint of fingerprint point a  is defined as 

(17). 

1[     ... ]a a a a a m afp x y z RSSI RSSI 
 =                                                 (17) 

 

As expressed in (17), the fingerprint a
fp  after screening is composed of RSSI values 

numbered as 1– m  extracted from fingerprint a
fp . Reconstructed fingerprint library X  

performs the same work for all the fingerprint points, and can be simplified as 1
X . 

3.2.3 Matching Algorithm 

This study adopts the KNN algorithm for fingerprint matching in the simplified fingerprint 

library 1
X . According to ( )

match
BS u , the fingerprint of point u  is defined as (18). 
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0 0 0 1[     ... ]u u u u u m ufp x y z RSSI RSSI =                                            (18) 

 

Where since its coordinates are unknown, 0 0 0( , , )u u ux y z  is used instead of ( , , )
u u u

x y z  to 

indicate the coordinates of point u , and 0 0 0( , , )u u ux y z  are both set to 0. 1u
RSSI – m uRSSI   

indicates the values of the signal strength received by point u  from the base stations in 

( )
match

BS u . The RSSI root mean square error ui
   between point u  and the fingerprint point i  

in 1
X  is defined in (19). 

 

2

=1

1
( )

m

ui iu ii

i

RSSI RSSI
m




 = −

                                             (19) 

 

The minimum value of ui
   is min . We select ( 2)k k   values closest to min , and record the 

fingerprint points to which these k  values correspond. Then, we average the coordinates of 

the k  fingerprint points to obtain the estimated coordinates ( , , )
u u u

x y z    of point u  

 

1

1

1

1

1

1

k

u i

i

k

u i

i

k

u i

i

x x
k

y y
k

z z
k



=



=



=


 =




 =


 =









                                                            (20) 

 

where , ,i i ix y z    are the coordinates of the fingerprint point i  among the k  fingerprint points. 

3.3 Algorithm Flow 

The algorithm is divided into two stages: offline library building stage and online matching 

stage. 

Step 1: Start. 

Step 2: Initialize parameters, including BS , N , I , P , 2 , c , etc. 

Offline library building stage: 

Step 3: Record data to construct partial fingerprint database Ψ . 

Step 4: Reconstruct the complete fingerprint library X  using Ψ  via the FPCA 

reconstruction algorithm. 

Online matching stage: 

Step 5: Obtain the service base station set ( )
match

BS u  through the dynamic base station 

matching strategy. 

Step 6: Extract the corresponding fingerprints from the complete fingerprint library X  

using the base station number in ( )
match

BS u  to obtain the simplified fingerprint library 1
X  and 

to record the fingerprint u
fp  of point u . 

Step 7: Estimate the coordinates of point u by matching u
fp  with the fingerprint in 1

X  

using the KNN algorithm. 

Step 8: Conclusion. 

The DSR-FP algorithm flowchart is depicted in Fig. 5. 
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Fig. 5.  DSR-FP algorithm flowchart 

4. Feasibility Analysis 

The FPCA algorithm presented in Section III-A of this paper uses the matrix-filling theory as 

the theoretical basis. The theory of matrix filling is the use of reconstruction algorithms to 

estimate unknown elements through known elements, provided that the matrix satisfies low 

rank properties, thus filling incomplete low rank matrices [23]. However, not all low-rank 

matrices can be reconstructed, and the following three examples illustrate the cases in which 

they cannot be reconstructed. When the low-rank matrix M  contains only one non-zero 

element, as shown in (21). 
 

0 ... 1 0 ... 0

0 ... 0 0 ... 0

... ... ... ... ... ...

0 ... 0 0 ... 0

0 ... 0 0 ... 0

 
 
 

  =
 
 
 
 

M                                                     (21) 

 

When using some of its elements for reconstruction, we may obtain an all-zero partial 

matrix Ψ , which cannot be used for the reconstruction algorithm. When only one row of 

elements in the low-rank matrix M  is not 0, and all the other elements are 0, as shown in the 

following formula. 

 

1 2 z

0 0 ... 0

0 0 ... 0

... ... ... ...

...

... ... ... ...

0 0 ... 0

0 0 ... 0

  

 
 
 
 
 

 =  
 
 
 
 
 

M                                                        (22) 
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In (22), the element of 1 2 z...    is not 0, and the element of all other rows is 0.When 

using some of its elements for reconstruction, we may get an all-zero partial matrix Ψ , which 

cannot be used for the reconstruction algorithm. When the low-rank matrix M is obtained 

through the multiplication of the row vector and column vector, as in (23). 

 

 

1

2

1 2 3

3

4




  





 
 
    = 
 
 
 

M                                                    (23) 

 

If the matrix Ψ  after random sampling does not contain any element of the first column of 

M , then element 1
  cannot be restored, resulting in the final failure to restore M . Examples 

(1) and (2) illustrate that the reconstruction algorithm cannot restore matrix M  when all the 

non-zero information is concentrated in very few positions. Example (3) illustrates that M  

cannot be restored when the sampling is such that Ψ  is missing some key elements. 

Although the original fingerprint library M  suffers from low ranking affected by the 

states of the base stations, it does not result in all-zero rows or all-zero columns; therefore, 

situations as in examples (1) and (2) do not occur. To avoid the situation of example (3), 

statistics are taken in a way that approximates a random homogeneous sample: multiple 

statistics are considered for each fingerprint point, ensuring that the matrix Ψ  is not 

completely missing elemental information for any row or column of M . 

Corresponding studies have been conducted on the conditions under which matrices can be 

precisely reconstructed. Candès et al. [21] demonstrated that when the row vector space and 

column vector space of a matrix do not agree with the standard matrix, then the matrix 

characterized by the nuclear paradigm minimization problem can be recovered from a small 

amount of randomly sampled data. This inconsistency is also known as strong incoherence and 

is defined and derived as follows. The SVD of M  is defined in (24). 

 

1 ( )

T

j rank

j j j
w v

 

 = 
M

M                                                         (24) 

 

where j   represents the non-negative singularity j  of M , jw  represents the left singularity 

vector j  of M , j
v  represents the right singularity vector j  of M . We set u

T  to represent 

the orthogonal projection of M  in the column space and v
T  to represent the orthogonal 

projection of M  in the row space [24], as follows: 

 
*

( )

*

( )

j j

v j

u

j rank

n

j

j ra k

u u

v v





=

=










M

M

T

T

                                                           (25) 

 

A matrix symbolic mode E  [23] of M  is shown in (26). 

 
*

( )j rank

j j
u v



= 
M

E                                                             (26) 

 

Thus, we can obtain (27). 
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Representing the strong incoherence of matrix M  by u
T , v

T , and E , two hypotheses are 

proposed here. Hypothesis 1 [24]. There exists a positive number 1
  such that the vectors h  

and h  belonging to the 1 1
n n   dimensional vector space and the vectors l  and l   belonging to 

the 2 2n n  dimensional vector space satisfy (28). 

 

1

1 1

1

2 2

( )( )
, 1

( )( )
, 1

h hu h h

v ll l l

rankrank
e e

n n

rankrank
e e

n n





=

=





 
− 

 


 − 



MM
T

MM
T

                                    (28) 

 

Hypothesis 2 [24]. There exists a positive number 2
  such that the vectors h  and l  

belonging to the 1 2
n n  dimensional vector space satisfy (29). 

 

2

1 2

( )
hl

rank

n n







M
E                                                       (29) 

 

If 1 2
,     , M satisfies the strong incoherence similar to  . From the above, it can be 

seen that when the ( )rank M  of matrix M  is smaller than its number of rows and columns, it 

is always possible to determine   that satisfies hypotheses 1 and 2, making the matrix satisfy 

the strong incoherence condition. Because the data in the original fingerprint library M  

contains many zero values, its rank is smaller than its number of rows and columns, and thus 

has a low rank, indicating that M  can satisfy the strong incoherence condition. 

Candès et al. [24] established in  the quantitative conditions that need to be met for data to 

be enumerated or sampled when a low-rank matrix satisfying the strong incoherence condition 

is reconstructed. 

We set the low-rank matrix M  to satisfy the strong incoherence of  , numerically 

asymptotic to 3
log( )n . We define 3 1 2

max( , )n n n= . If there is a constant C , we make the 

number of elements t  of the partial fingerprint library Ψ  satisfy (30). 

 
2 6

3 3( ) logt C n rank n  M                                                   (30) 

 

Then, M  can obtain the unique solution of (8) or (9) with the probability of at least 
3

31 n
−

− . 

Therefore, the number of elements recorded in the simulation experiment should satisfy (30). 

Thus, based on the above arguments, M  can be reconstructed with a small amount of data. 
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5. Simulation Results and Analysis 

In this study, simulation experiments were performed on the MATLAB platform. We consider 
an indoor positioning model for shopping malls and hospitals. We set 50A m= , 50B m= , 

30Z m= , such that the volume of the indoor positioning model is 50 50 30 m m m . Next, 
we set the distance between adjacent fingerprint points as 0.25c cm= , so that the number of 
fingerprint points 1

n  is 488521. Considering the super-intensive deployment of 5G base 
stations, set the total number of base stations to 50; thus, 50N = . These base stations are 
located at the top of the model, and the number of activated base stations is set to 40. The point 
to be located is among randomly distributed locations in the room. The RSSI value of the 
fingerprints and that of the point to be located are calculated by (31). 
 

                                       RSSI P gain loss noise= + − −                                                   (31) 

 

where P denotes the signal transmission power of the base station, gain  denotes the channel 

gain, loss  denotes the path loss for large-scale decline, small-scale decline, etc., and noise  

denotes the Gaussian white noise. 

5.1 Low-rank Verification 

According to N , the number of columns 2
n  of the original fingerprint library M  are 53, and 

the original fingerprint library M  is a matrix of 4888521 53  dimension. M  is obtained by 

conventional methods owing to the large amount of data. The RSSI data from the 1st to 10th 

base stations of the 1st to 40,000th fingerprint points in M  are considered as the analysis data, 

and the singularity histogram is plotted in Fig. 6. 

 

Fig. 6. Histogram of partial data singularities 

 

In Fig. 6, the data are heavily influenced by the 1st to 4th base stations, which implies that 

the matrix contains a large amount of information concentrated in a small portion of the data, 

and the amount of information is small, consistent with the characteristics of a low-rank matrix. 

Additionally, the rank calculated by the MATLAB platform is 33, which is smaller than 

1 2
min( , )=53n n , which also indicates that the fingerprint matrix is a low-rank matrix. 
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5.2 Error Analysis between Reconstruction Matrix and Original Matrix  

The number of recorded elements 136637024t =  is 52.7% of 34888521 5  and satisfies the 

reconstruction condition of (30) with the constant 6
2 10C

−
=  . Using t  data constituting the 

partial fingerprint library Ψ , the FPCA algorithm is used to obtain the reconstruction matrix 
X  to recover the remaining 47.3% of the data through 52.7% of the data. Comparing X  and 

M  yields errors between the reconstruction matrix and theoretical matrix. 

Owing to the large amount of data, only the 4th to 11th fingerprints from the 1st to 6th 

fingerprint points are provided. The corresponding data in the original matrix M  are 

presented in Table 2, and the corresponding data in the reconstruction matrix X  are presented 

in Table 3.  
 

Table 2. Original Matrix Data Sheet (dBm) 

 4 5 6 7 8 9 10 11 

1 –36.6787  –36.6787  –32.8102  0.0000  –28.3585  –28.6787  –30.0988  –35.9112  

2 –36.8367  –36.8267  –30.8335  0.0000  –27.2975  –30.5330  –28.4276  –34.6993  

3 –36.8906  –36.8916  –31.6787  0.0000  –29.1194  –31.4396  –27.6787  –35.1194  

4 –36.8367  –34.8327  –30.4276  0.0000  –29.6993  –29.3894  –31.8367  –36.2975  

5 –36.6787  –35.6257  –29.0988  0.0000  –28.9112  –33.3585  –28.8906  –38.3585  

6 –36.4276  –36.0879  –32.7096  0.0000  –26.6993  –28.2975  –30.8367  –36.3894  

 

Table 3. Reconfiguration Matrix Data Sheet (dBm) 

 4 5 6 7 8 9 10 11 

1 –36.1945  –35.9561  –32.8102  0.0000  –28.3585  –28.6787 –30.0988  –35.9112  

2 –36.2068  –36.8267  –30.8335  0.0000  –27.2975  –30.5330  –28.1121  –34.3107  

3 –36.8906  –36.8916  –31.6787  0.0000  –29.1194  –31.4396  –27.1694  –34.6031  

4 –36.8367  –34.8327  –29.8647  0.0000  –29.6993  –29.3894  –31.2382  –36.2975  

5 –36.6787  –35.6257  –28.5808  0.0000  –28.3763  –33.3585  –28.8906  –38.3585  

6 –36.4276  –36.0879  –32.2876  0.0000  –26.6993  –28.2975  –30.2724  –36.3894  

 

By comparing the data in Table 2 and Table 3, and it can be seen that there is a certain 

error between the reconstruction matrix X  and the corresponding element of the original 

matrix M . It is necessary to calculate the absolute and relative errors of the corresponding 

element to more visually reflect the accuracy of the reconstruction. The absolute error of the 

data corresponding to M  is presented in Table 4 and the relative error is presented in Table 

5. 
 

Table 4. Absolute Error Data Sheet (dBm) 

 4 5 6 7 8 9 10 11 

1 –0.4841 –0.7225 0 0 0 0 0 0 

2 –0.6299 0 0 0 0 0 –0.3155 –0.3886 

3 0 0 0 0 0 0 –0.5092 –0.5162 

4 0 0 –0.5629 0 0 0 –0.5985 0 

5 0 0 –0.5179 0 –0.5348 0 0 0 

6 0 0 –0.4219 0 0 0 –0.5643 0 
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Table 5. Relative Error Data Sheet (%) 

 4 5 6 7 8 9 10 11 

1 1.32% 1.97% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2 1.71% 0.00% 0.00% 0.00% 0.00% 0.00% 1.11% 1.12% 

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.84% 1.47% 

4 0.00% 0.00% 1.85% 0.00% 0.00% 0.00% 1.88% 0.00% 

5 0.00% 0.00% 1.78% 0.00% 1.85% 0.00% 0.00% 0.00% 

6 0.00% 0.00% 1.29% 0.00% 0.00% 0.00% 1.83% 0.00% 

 

From Table 4 and Table 5, it can be seen that the error of X  with the corresponding 

elements of the part of M  is small, and the average relative error calculated from all the 

simulation data is 1.21%. Therefore, the influence on the positioning error is almost 

negligible. 

5.3 Positioning Error Analysis 

At 10 dB=SNR , the DSR-FP positioning results are depicted in Fig. 7. The solid dots 

indicate the base station location, asterisks indicate the estimated location of the point to be 

located, and hollow dots indicate the real location of the point to be located. 

 

Fig. 7.  DSR-FP algorithm positioning results at SNR = 10 dB 
 

From Fig. 8, it can be seen that at 10dBSNR = , the position of the point to be located as 

estimated by the DSR-FP algorithm basically coincides with the real position of the point to be 

located, indicating that the accuracy of the positioning results of the DSR-FP algorithm is 

high. 

The average error analysis of the traditional fingerprint matching algorithm and the 

DSR-FP positioning algorithm is depicted in Fig. 2, where the horizontal coordinate indicates 

the SNR ratio (unit: dB), the vertical coordinate indicates the average error (unit: m), the curve 

marked with asterisks indicates the average error of the traditional fingerprint matching 

algorithm, and the curve marked with circles indicates the average error of the DSR-FP 
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algorithm. 

 

 

Fig. 8. Mean error analysis graph 

 

As can be seen from Fig. 8, the average positioning error of the DSR-FP algorithm is 

smaller than the average error of the traditional fingerprint matching algorithm, indicating that 

the positioning error accuracy of the DSR-FP algorithm is higher. The average error of the 

DSR-FP algorithm is 0.3019 m at 2dBSNR =  and 0.1552 m at 20dBSNR = , revealing that the 

DSR-FP algorithm exhibits better positioning accuracy as the SNR increases. 

6. Conclusion 

The DSR-FP algorithm proposed in this study firstly constructs a local fingerprint matrix from 

partial fingerprint data, and then reconstructs the matrix as a complete fingerprint library using 

the FPCA reconstruction algorithm. The to-be-located nodes are screened based on the 

dynamic base station matching policy to select the service base stations with the best 

communication quality and multiple sub-optimal service base stations to form a collection of 

service base stations. The corresponding fingerprints are then extracted from the fingerprint 

database based on the information from the service base station to form a simplified 

fingerprint database. Finally, the 3D estimated coordinates of the point to be located are 

obtained by the KNN matching algorithm. The algorithm reduces the time, complexity, and 

cost of building a fingerprint library by refactoring the algorithm and a dynamic base station 

matching strategy. Additionally, it can also reduce the interference of large fingerprint data in 

the fingerprint library, shorten the time of online location matching, and improve the 

positioning accuracy. The feasibility of the algorithm is demonstrated through theoretical 

analysis. The simulation results demonstrate that (1) the average relative error between the 

reconstructed fingerprint library and the original one is 1.21%, and the accuracy of the 

reconstructed fingerprint library is high; (2) the average error of the algorithm is 0.3019 m 

when the SNR is 2 dB and 0.1552 m when the SNR is 20 dB, indicating an improved 

positioning accuracy in comparison with that of the traditional fingerprint matching algorithm. 
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